Дробные факторные планы испытаний. Планирование испытаний

Новое о образовании » Образовательный стандарт дисциплины "Системное моделирование" » Дробные факторные планы испытаний. Планирование испытаний

Страница 11

В дальнейшем проведение реальных испытаний чередовалось с мысленными опытами. При подсчете предсказанных значений натуральные значения переводились в кодированные по формуле. Как видно из табл. 2.11, переход от условий испытаний № 5 к условиям испытания № 6 не обеспечивает приращения удельной тяги. Далее в точке (рис. 3.2) была проведена контрольная серия из четырех испытаний, которая подтвердила, что дальнейшие вариации и не ведут к увеличению .

Симплексный метод заключается в том, что испытания проводятся в точках факторного пространства, соответствующих вершинам симплексов. Под -мерным симплексом подразумевают выпуклую геометрическую фигуру, имеющую вершину, соединенные прямыми отрезками-ребрами. Одномерным симплексом будет отрезок прямой, двумерным – плоский треугольник, трехмерным – тетраэдр и т.д. При планировании испытаний обычно используют правильные симплексы, у которых вершины находятся друг от друга на одинаковом расстоянии. В отличие от крутого восхождения, при использовании симплексного метода процесс изучения поверхности отклика совмещается с движением к экстремуму. Схема поиска экстремума симплекс-методом при показана на рис. 2. Сначала проводится серия испытаний в вершинах правильного -мерного симплекса (точки ) с целью выявить точку, характеризующую условия, при которых получаются худшие результаты. Следующую серию испытаний проводят в вершинах нового симплекса, который получают заменой точки, соответствующей худшему результату (точка ), ее зеркальным отображением. Тем самым достигается смещение центра тяжести симплекса в направлении экстремума. В дальнейшем процедура повторяется, и образуется последовательность симплексов, перемещающихся в факторном пространстве в направлении к экстремуму. На близость экстремума указывает начинающееся вращение симплекса вокруг одной из его вершин.

Шаговое движение к экстремуму продолжается до тех пор, пока будет достигнута «почти стационарная область», которая не может быть описана линейной моделью, и где значимы совместные (квадратичные) эффекты воздействия.

Близость «почти стационарной области» можно установить, если провести серию испытаний в центре плана и определить значение выходного параметра . Вычисляемое для линейной модели значение при реализации ПФП или ДФП в «почти стационарной области» является совместной оценкой для свободного члена и суммы квадратов членов. Следовательно, разность дает представление о кривизне поверхности отклика.

«Почти стационарную область» в большинстве случаев с приемлемой точностью можно описать уравнением второго порядка

. (18)

Поскольку для отыскания раздельных оценок параметров число уровней должно быть на единицу больше степени полинома, число уровней должно быть не менее трех. Однако применение ПФП типа приведет к резкому возрастанию количества испытаний. Для сокращения можно использовать центральные композиционные планы (ЦКП). Ядро ЦКП составляют ПФП или ДФП: ПФП, если число факторов , и ДФП при . Это приводит к тому, что если после реализации ПФП (ДФП) гипотеза о линейности модели не подтвердилась, нет необходимости проводить испытания заново. Для получения модели второго порядка достаточно добавить к ПФП (ДФП) несколько специальным образом подобранных точек, в которых и провести дополнительную серию испытаний.

Страницы: 6 7 8 9 10 11 12 13 14 15 16


Актуально о образовании:

Биография Д.И. Менделеева
Дмитрий Иванович Менделеев родился 27 января 1834 г. В Тобольске. В семье он был последним, семнадцатым ребенком. Отец учено Иван Павлович Менделеев был сыном сельского священника Соколова. Свою фамилию отец будущего ученого Иван Павлович получил почти случайно. Фамилию давали нередко учителя духов ...

Историко-педагогический анализ проблемы формирования умений решать текстовые задачи
Проблема формирования умений решать текстовые задачи учащихся является актуальной на протяжении становления и развития педагогической науки. С давних пор педагогов и воспитателей интересовал вопрос о роли текстовых задач в обучении. Решение текстовых задач играет в математическом образовании очень ...

Рабочий план
Рабочий план составляют на основе учебного плана и программы. Он может быть тематическим (материал излагается по темам, которые могут быть включены в несколько занятий в методической последовательности) и поурочным. Рабочий план составляют на полгода, три или один месяц (в зависимости от условий за ...

Категории

Copyright © 2019 - All Rights Reserved - www.centraleducation.ru