Дробные факторные планы испытаний. Планирование испытаний

Новое о образовании » Образовательный стандарт дисциплины "Системное моделирование" » Дробные факторные планы испытаний. Планирование испытаний

Страница 15

Принцип проверки статистических гипотез состоит в том, что если расчетное значение попадает в область допустимых значений, то принимают гипотезу . При попадании в критическую область отвергается и принимается гипотеза . Заметим, что принятие не означает, что доказана ее справедливость, а свидетельствует лишь о том, что результаты испытаний выборки не противоречат выдвинутым предположениям о свойствах объекта (генеральной совокупности). Необходимо иметь в виду, что продолжение испытаний может привести к иному заключению.

Рис. 1. Область допустимых значений и критическая область

Таким образом, правильное определение вида критической области и уровня значимости наряду с выбором статистики критерия; в основном, определяют достоверность статистического решения. В основе выбора лежит анализ последствий совершения ошибки первого или второго рода, поскольку одновременно уменьшить и невозможно. Для случая правосторонней критической области это иллюстрируется рис. 2. Если смещать вправо [не изменяя положения кривых ], то с уменьшением мощность критерия снижается. Если переместить влево, увеличивается, зато возрастает мощность критерия. Формализованные методы установления критической области основываются на том, что величины и связаны с объемом испытаний .

Рис. 2. Случай правосторонней критической области

Если выбрана, то при фиксированном можно руководствоваться критерием Неймана-Пирсона, в соответствии с которым из всех областей фиксированного уровня в качестве критической выбирается наиболее мощная (обеспечивающая максимум величины ). Увеличение (возрастание затрат на испытание) является единственным способом одновременного снижения и . Интуитивно значения выбираются в диапазоне . При проверке гипотез относительно технических характеристик ракет, агрегатов наземного оборудования, артиллерийских комплексов . Оценивая показатели качества (надежности, эффективности), область допустимых значений целесообразно расширить (). Более жесткие условия могут задаваться при проверке однородности характеристик контрольно-испытательной аппаратуры и свойств элементов, испытываемых в лабораторных условиях .

2. Проверка гипотез о параметрах

Рассмотрим первую группу задач статистической проверки гипотез, обеспечивающих принятие решений о средних значениях параметров. Возможны две основные задачи: проверка соответствия математических ожиданий одноименных параметров (задача проверки однородности), проверка соответствия этих математических ожиданий требованиям ТТЗ (ТУ).

Страницы: 10 11 12 13 14 15 16 17


Актуально о образовании:

Понятие модуля и кредита
Модули конструируются как системы учебных элементов, объединенных признаком соответствия определенному объекту профессиональной деятельности. Последний рассматривается как некоторый объем учебной информации, который имеет самостоятельную логическую структуру и содержание, что позволяет оперировать ...

Элементы III-А группы периодической системы
Алюминий Al (лат. Aluminium, от лат. alumen — квасцы). Аl— элемент III группы 3-го периода периодической системы Д. И. Менделеева, п. н. 13, атомная масса 26,9815, имеет один стабильный изотоп 27Al (100 %). Металлический Аl был получен в 1827г. Вёлером. По содержанию в земной коре (8,8 %) Аl занима ...

Особенности развития связной речи детей дошкольного возраста
Прежде чем приступить к рассмотрению особенностей формирования связной речи детей дошкольного возраста, обратимся к анализу литературных источников и попытаемся собрать возможный спектр определений связной речи. С.В. Алабужева под связной речью понимает развернутое изложение определенного содержани ...

Категории

Copyright © 2025 - All Rights Reserved - www.centraleducation.ru