Принцип проверки статистических гипотез состоит в том, что если расчетное значение
попадает в область допустимых значений, то принимают гипотезу
. При попадании
в критическую область
отвергается и принимается гипотеза
. Заметим, что принятие
не означает, что доказана ее справедливость, а свидетельствует лишь о том, что результаты испытаний выборки не противоречат выдвинутым предположениям о свойствах объекта (генеральной совокупности). Необходимо иметь в виду, что продолжение испытаний может привести к иному заключению.
Рис. 1. Область допустимых значений и критическая область
Таким образом, правильное определение вида критической области и уровня значимости наряду с выбором статистики критерия; в основном, определяют достоверность статистического решения. В основе выбора
лежит анализ последствий совершения ошибки первого или второго рода, поскольку одновременно уменьшить
и
невозможно. Для случая правосторонней критической области это иллюстрируется рис. 2. Если смещать
вправо [не изменяя положения кривых
], то с уменьшением
мощность критерия снижается. Если
переместить влево,
увеличивается, зато возрастает мощность критерия. Формализованные методы установления критической области основываются на том, что величины
и
связаны с объемом испытаний
.
Рис. 2. Случай правосторонней критической области
Если
выбрана, то при фиксированном
можно руководствоваться критерием Неймана-Пирсона, в соответствии с которым из всех областей фиксированного уровня
в качестве критической выбирается наиболее мощная (обеспечивающая максимум величины
). Увеличение
(возрастание затрат на испытание) является единственным способом одновременного снижения
и
. Интуитивно значения
выбираются в диапазоне
. При проверке гипотез относительно технических характеристик ракет, агрегатов наземного оборудования, артиллерийских комплексов
. Оценивая показатели качества (надежности, эффективности), область допустимых значений целесообразно расширить (
). Более жесткие условия могут задаваться при проверке однородности характеристик контрольно-испытательной аппаратуры и свойств элементов, испытываемых в лабораторных условиях
.
2. Проверка гипотез о параметрах
Рассмотрим первую группу задач статистической проверки гипотез, обеспечивающих принятие решений о средних значениях параметров. Возможны две основные задачи: проверка соответствия математических ожиданий одноименных параметров (задача проверки однородности), проверка соответствия этих математических ожиданий требованиям ТТЗ (ТУ).
Актуально о образовании:
Идентификация как механизм адаптации к школьной жизни
Психология еще не раскрыла все защитные механизмы, используемые людьми с целью адаптации. Одной из причин этого мы считаем то обстоятельство, что данной проблемой до последнего времени занимались в основном только психоаналитики, которые ограничены своими теоретическими взглядами на природу психики ...
Работа над лексико-грамматическим
материалом
В восьмом классе в текстах для чтения впервые начинает появляться новый лексический материал, возникает и необходимость в умении использовать анализ для понимания отдельных слов без помощи словаря. Но пока это еще единичные случаи. Тем не менее, чтобы учащиеся могли справиться с ними, им приходится ...
Проблемы среднего образования г. Касимов
В Касимове существует развитая система народного образования. Каждый житель города становится ее питомцем с самого раннего возраста. Значение системы образования для города велико. Она должна пополнять кадровый и творческий потенциал экономики и культуры, стать генератором развития города в новых н ...