Принцип проверки статистических гипотез состоит в том, что если расчетное значение
попадает в область допустимых значений, то принимают гипотезу
. При попадании
в критическую область
отвергается и принимается гипотеза
. Заметим, что принятие
не означает, что доказана ее справедливость, а свидетельствует лишь о том, что результаты испытаний выборки не противоречат выдвинутым предположениям о свойствах объекта (генеральной совокупности). Необходимо иметь в виду, что продолжение испытаний может привести к иному заключению.
Рис. 1. Область допустимых значений и критическая область
Таким образом, правильное определение вида критической области и уровня значимости наряду с выбором статистики критерия; в основном, определяют достоверность статистического решения. В основе выбора
лежит анализ последствий совершения ошибки первого или второго рода, поскольку одновременно уменьшить
и
невозможно. Для случая правосторонней критической области это иллюстрируется рис. 2. Если смещать
вправо [не изменяя положения кривых
], то с уменьшением
мощность критерия снижается. Если
переместить влево,
увеличивается, зато возрастает мощность критерия. Формализованные методы установления критической области основываются на том, что величины
и
связаны с объемом испытаний
.
Рис. 2. Случай правосторонней критической области
Если
выбрана, то при фиксированном
можно руководствоваться критерием Неймана-Пирсона, в соответствии с которым из всех областей фиксированного уровня
в качестве критической выбирается наиболее мощная (обеспечивающая максимум величины
). Увеличение
(возрастание затрат на испытание) является единственным способом одновременного снижения
и
. Интуитивно значения
выбираются в диапазоне
. При проверке гипотез относительно технических характеристик ракет, агрегатов наземного оборудования, артиллерийских комплексов
. Оценивая показатели качества (надежности, эффективности), область допустимых значений целесообразно расширить (
). Более жесткие условия могут задаваться при проверке однородности характеристик контрольно-испытательной аппаратуры и свойств элементов, испытываемых в лабораторных условиях
.
2. Проверка гипотез о параметрах
Рассмотрим первую группу задач статистической проверки гипотез, обеспечивающих принятие решений о средних значениях параметров. Возможны две основные задачи: проверка соответствия математических ожиданий одноименных параметров (задача проверки однородности), проверка соответствия этих математических ожиданий требованиям ТТЗ (ТУ).
Актуально о образовании:
Роль ДЮСШ в развитии физической культуры района
В настоящее время разработана концепция областной программы «Здоровье - XXI век». Программа рассчитана до 2005 года. В ней отражено то, что главная задача здорового образа жизни — не столько правильное питание, полноценный отдых, спорт и борьба со стрессами, сколько убеждение каждого человека, преж ...
Геометрия на спичках
В работе над задачками можно использовать спички, счётные палочки или просто рисунок на бумаге. Спички имеют стандартную длину и это свойство позволяет строить из них различные геометрические фигуры. Одна спичка - это модель отрезка. Данное занятие целесообразно провести в форме викторины. Разделит ...
Диагностика уровней личностного развития одаренных старшеклассников
Для организации педагогической поддержки личностного саморазвития одаренных старшеклассников на базе МОУ СОШ №31 города Ишима был проведен эксперимент. В эксперименте приняли участие учащиеся 9 и 11 классов. Эксперимент состоял из трех этапов: 1 этап – выявление одаренных старшеклассников, диагност ...