Принцип проверки статистических гипотез состоит в том, что если расчетное значение
попадает в область допустимых значений, то принимают гипотезу
. При попадании
в критическую область
отвергается и принимается гипотеза
. Заметим, что принятие
не означает, что доказана ее справедливость, а свидетельствует лишь о том, что результаты испытаний выборки не противоречат выдвинутым предположениям о свойствах объекта (генеральной совокупности). Необходимо иметь в виду, что продолжение испытаний может привести к иному заключению.
Рис. 1. Область допустимых значений и критическая область
Таким образом, правильное определение вида критической области и уровня значимости наряду с выбором статистики критерия; в основном, определяют достоверность статистического решения. В основе выбора
лежит анализ последствий совершения ошибки первого или второго рода, поскольку одновременно уменьшить
и
невозможно. Для случая правосторонней критической области это иллюстрируется рис. 2. Если смещать
вправо [не изменяя положения кривых
], то с уменьшением
мощность критерия снижается. Если
переместить влево,
увеличивается, зато возрастает мощность критерия. Формализованные методы установления критической области основываются на том, что величины
и
связаны с объемом испытаний
.
Рис. 2. Случай правосторонней критической области
Если
выбрана, то при фиксированном
можно руководствоваться критерием Неймана-Пирсона, в соответствии с которым из всех областей фиксированного уровня
в качестве критической выбирается наиболее мощная (обеспечивающая максимум величины
). Увеличение
(возрастание затрат на испытание) является единственным способом одновременного снижения
и
. Интуитивно значения
выбираются в диапазоне
. При проверке гипотез относительно технических характеристик ракет, агрегатов наземного оборудования, артиллерийских комплексов
. Оценивая показатели качества (надежности, эффективности), область допустимых значений целесообразно расширить (
). Более жесткие условия могут задаваться при проверке однородности характеристик контрольно-испытательной аппаратуры и свойств элементов, испытываемых в лабораторных условиях
.
2. Проверка гипотез о параметрах
Рассмотрим первую группу задач статистической проверки гипотез, обеспечивающих принятие решений о средних значениях параметров. Возможны две основные задачи: проверка соответствия математических ожиданий одноименных параметров (задача проверки однородности), проверка соответствия этих математических ожиданий требованиям ТТЗ (ТУ).
Актуально о образовании:
Использование системы творческих упражнений в практике на уроках
литературного чтения
В ходе эксперимента предлагалась система заданий, направленных на развитие творческой активности младших школьников. Эта система разработана в соавторстве с учителем начальных классов Емельяненко Мариной Владимировной. Система представляет собою планирование уроков чтения в 2-ом классе с реализацие ...
Основные направления воспитания и обучения детей с
нарушениями опорно-двигательного аппарата
Основной целью воспитательной и педагогической работы при нарушениях опорно-двигательного аппарата является оказание детям медицинской, психологической, педагогической, логопедической и социальной помощи, обеспечение максимально полной и социальной адаптации, общего и профессионального обучения. Оч ...
Педагогические принципы М. Монтессори
Когда ребенок читает слова на табличках, лежащих подле соответствующих предметов, - мы это называем интуитивным чтением. Заметим, что он их может прочесть, даже не зная шрифта, не зная букв. Магическая сила? Результат предварительной работы с подвижным алфавитом? Нет. Интуитивное чтение происходит ...