Дробные факторные планы испытаний. Планирование испытаний

Новое о образовании » Образовательный стандарт дисциплины "Системное моделирование" » Дробные факторные планы испытаний. Планирование испытаний

Страница 14

Рассмотрим последовательность решения задачи статистической проверки гипотез. На первом этапе уточняется задача исследования, после чего выбираются исходная гипотеза и одна или несколько альтернативных. Следующим этапом является выбор критерия проверки гипотез, под которым будем понимать свод правил, указывающих, при каких результатах наблюдений гипотеза отклоняется, а при каких принимается. Выбранному критерию соответствует статистика критерия – непрерывная случайная величина с известным законом распределения, функционально связанная с результатами испытаний. Статистику критерия обозначают в соответствии с видом закона распределения (, , , -критерий). Безотносительно к виду закона распределения статистику критерия обозначим .

При принятии статистического решения возможны четыре случая (табл. 1), определяемые содержание гипотез и (верна, неверна) и тем, какая из гипотез окажется принятой. Вероятность опровергнуть гипотезу , когда она верна (совершить ошибку первого рода), называют уровнем значимости , а вероятность – отвергнуть при условии ее ложности – мощностью критерия, -вероятность – принять гипотезу , когда справедлива гипотеза (совершить ошибку второго рода). Мощность критерия зависит от содержания . Наиболее мощным критерием простой гипотезы относительно простой альтернативы является критерий, для которого . Предпочтительно выбирать равномерно наиболее мощный критерий, который является наиболее мощным относительно любой альтернативной гипотезы.

Таблица 1

Заключение

по гипотезе

Гипотеза

Верна

Неверна (верна )

Принята

(правильное решение)

(ошибка второго рода, риск заказчика)

Отвергнута (принята )

(ошибка первого рода, риск поставщика)

(правильное решение)

Выбор уровня значимости приводит к тому, что множество значений разбивается на два непересекающихся подмножества: область допустимых значений и критическую область (рис. 1). Область допустимых значений включает совокупность значений , при которых принимается гипотеза . Совокупность значений при которых отвергается (принимается ), образует критическую область. Критическая область может быть односторонней (правосторонней, левосторонней) и двусторонней (симметричной и несимметричной). Точки, разделяющие области, называют критическими точками .

Страницы: 9 10 11 12 13 14 15 16 17


Актуально о образовании:

Конструкция асинхронных машин с короткозамкнутым ротором
Конструкция асинхронной машины с короткозамкнутым ротором представлена на рисунке 1. Статор машины состоит из магнитопровода 2, трехфазной разноименнополюсной обмотки 20, выводные концы которой с помощью выводной коробки 13 присоединяются к сети переменного тока и станины 1. Активными элементами ст ...

Временные и количественные изменения словаря ребенка
Лексика ребенка формируется постепенно в ходе речевого общения окружающих с ребенком и знакомства с окружающим миром. Л.И. Белякова, обобщая данные изучения речевого и психомоторного развития детей от 0 до 5 лет, свидетельствует: 0 -1,5 месяца жизни – период интенсивного интонационного обогащения к ...

Виды и уровни проблемного обучения
Проблемное обучение не может быть одинаково эффективным в любых условиях. Практика показывает, что процесс проблемного обучения порождает различные уровни как интеллектуальных затруднений учащихся, так и их познавательной активности: познавательная самостоятельность ученика может быть или очень выс ...

Категории

Copyright © 2025 - All Rights Reserved - www.centraleducation.ru