Для проверки гипотезы можно воспользоваться критериями Кохрена или Бартлетта. Если , расчетное значение статистики критерия Кохрена определяется по формуле и гипотеза
принимается, если
, где
,
. Если дисперсии
однородны (принята гипотеза
), то дисперсия опыта (или, что то же самое, дисперсия воспроизводимости) подсчитывается по зависимости
, (11)
где знаменатель характеризует число степеней свободы . В общем случае,
подсчитывается как среднее взвешенное значение
. (12)
Проверка значимости коэффициентов регрессии позволяет лучше осмыслить математическое описание процесса, а также уточнить вид модели путем отсеивания факторов, слабо влияющих на значение выходного параметра. Проверка значимости каждого из коэффициентов производится независимо, с помощью проверки гипотезы 0 по
-критерию. Расчетные значения статистики критерия можно определить по соотношению
. (13)
Если ,
то коэффициент
является значимым и соответствующий фактор оказывает существенное влияние на величину
. Статистическая незначимость
может быть вызвана следующими причинами:
интервал варьирования был выбран слишком малым;
уровень начального режима по фактору оказался близок к точке частного экстремума
;
велика ошибка опыта из-за влияния неуправляемых и неконтролируемых факторов;
данный фактор (совокупность факторов) не оказывают заметного влияния на величину выходного параметра.
Поскольку план ортогонален и коэффициенты оцениваются независимо друг от друга, оказавшиеся незначимыми коэффициенты могут быть отброшены без пересчета остальных.
Проверка адекватности заключается в подтверждении предположения, что полученная математическая модель достаточно верно описывает характер процесса. Формальное содержание гипотезы состоит в том, что предсказанные уравнением (расчетные) значения выходного параметра отклоняются от опытных
на величину, не превышающую некоторый наперед заданный уровень, и модель пригодна для обоснования инженерных решений. Для проверки гипотезы оценивается дисперсия адекватности
;
. (14)
Если дисперсия адекватности не превышает дисперсии опыта , то есть основание полагать, что модель адекватно описывает процесс. Согласно п. 1.3 для проверки гипотезы о дисперсиях используется
-критерий. Статистика критерия
. (15)
Модель считается адекватной процессу, если , где
,
. Если
,то для получения адекватного описания необходимо увеличить порядок аппроксимирующего полинома. Очевидно, что проверка адекватности возможна лишь в том случае, если
, то есть число разных испытаний
превосходит количество включаемых в модель факторов.
Актуально о образовании:
Закономерности развития речи детей дошкольного возраста
педагог дошкольный монологический речь обучение Закономерности развития речи детей дошкольного возраста рассмотрены в трудах таких педагогов, психологов как А.Н. Гвоздев, Л.С. Выготский, Д.Б. Эльконин, А.А. Леонтьев, Ф.А. Сохин и др. А.Н. Гвоздев в своем уникальном исследовании «Вопросы изучения де ...
Дифференциация, ее виды
Дифференциация в переводе с латинского “difference” означает разделение, расслоение целого на различные части, формы, ступени. Дифференцированное обучение – это: Форма организации учебного процесса, при которой учитель работает с группой учащихся, составленной с учетом у них каких-либо значимых для ...
Приемы работы по повышению умений и навыков решать текстовые
задачи младшими школьниками
В рамках формирующего этапа эксперимента нами были проведен в экспериментальном классе цикл уроков по математике. Система работы и подобранные задания были направлены на оптимизацию процесса обучения по формированию умений у младших школьников решать текстовые задачи, а именно предполагало выработа ...