Оператор 12 представляет собой счетчик числа обслуженных заявок, после каждой обслуженной заявки показание счетчика увеличивается на единицу.
С оператора 12 управление передается на оператор 7 и дальше формируется следующая заявка так же, как и в рассмотрением случае отказа в обслуживании.
Если неравенство не выполняется (следовательно
, это означает, что
-я заявка уже не принадлежит заданному интервалу, и реализация на этом заканчивается.
Оператор 13 представляет собой счетчик числа испытаний.
Оператор 14 проверяет, получено ли уже заданное число испытаний . Если неравенство
выполняется, управление передается оператору 15.
Оператор 15 осуществляет подготовку к следующему испытанию. При этом очищаются рабочие ячейки, хранящие значения и
, а содержимое ячеек, хранящих число отказов и обслуженных заявок, пересылаются в специальный массив для последующей статистической обработки. Дальше управление передается на оператор 3, и начинается очередное испытание.
Если неравенство не выполняется, управление передается оператору 16.
Оператор 16 осуществляет статистическую обработку полученных результатов и вычисляет требуемые показатели эффективности функционирования системы за время .
Можно моделировать работу системы за целый месяц в течение нескольких минут машинного времени. Преимущество «сжатия времени» при моделировании становится очевидным, если попытаться получить такую же информацию, используя физическую систему.
Пример. Рассмотрим, как можно моделировать однофазные системы обслуживания с помощью ручных вычислений. Этот пример должен пояснить основные идеи, описанные выше.
Пусть мы хотим моделировать систему массового обслуживания, поступление требований в которой подчинено пуассоновскому распределению со средним 3 клиента в час, а время обслуживания равно 0,2 ч с вероятностью 0,5 или 0,6 ч с вероятностью 0,5. Клиенты обслуживаются согласно дисциплине «первым пришел – первым обслуживаешься»; длина очереди, а также источник поступления клиентов не ограничены. Предположим, что в начальный момент моделирования клиентов нет.
Для пуассоновского входного потока со средней интенсивностью клиента в час промежутки времени между требованиями имеют экспоненциальное распределение и, как показано ранее, могут быть получены из формулы
.
Поскольку время обслуживания равно либо 0,2, либо 0,6 ч с равными вероятностями, время обслуживания определяется как
Актуально о образовании:
Место науки о стилях в школьной практике
Стилистика – учебная дисциплина, исследующая один из коммуникативных аспектов языка. Значение курса стилистики в воспитании и обучении молодого поколения обусловлено той особой ролью, которую выполняет язык как важнейшее средство общения человека во всей его многогранной речевой практике. Основной ...
Обучение детей дошкольного возраста упорядочиванию предметов
по величине
Обучение детей дошкольного возраста упорядочиванию предметов по величине имеет очень большое значение, т.к. четкое представление о величинах есть основа многих математических представлений. Сериационный ряд представляет собой последовательный ряд предметов, который обладает общими признаками и общи ...
Внеклассные мероприятия по химии как фактор развития самостоятельности
Одним из главных требований в преподавании химии являются твердые знания по основному предмету. Каждый учитель должен уметь ориентироваться в приоритетных направлениях своей деятельности, анализировать информацию и принимать правильные решения. Он должен заложить твердые разносторонние знания, фунд ...