. (4.25)
Из этого уравнения видно, что оно содержит неизвестные величины. Теперь значение интеграла можно вычислить, так как функция
УМ задана таблицей, а для определения
и
можно образовать систему двух уравнений с двумя неизвестными на основе уравнения (4.25). Это нетрудно сделать, если подставить в (4.25) значение еще двух точек, взятых из временного ряда. Тогда
(4.26)
После вычисления данных интегралов находятся неизвестные коэффициенты
и
. Затем определяется значение первой производной путем подстановки в уравнение (4.23)
,
и
. Корень базисного уравнения равен параметру
со знаком минус. Вычисленные параметры подставляются в формулу ФГС (4.19) для получения математического выражения формы связи между
и
.
В качестве примера применения функции с гибкой структурой для прогнозирования в военном деле рассматривается задача по определению вида зависимости между коэффициентом выпуска серийных образцов условных технических систем и объемом задач, выполняемых с помощью данных образцов. Эта зависимость в дальнейшем используется для получения прогноза. Исходные данные представлены в табл. 1.
Таблица 1
|
|
0,597 |
0,597 |
0,608 |
0,618 |
0,615 |
0,618 |
0,631 |
|
|
31,2 |
32,3 |
33,4 |
34,3 |
34,5 |
35,5 |
37,8 |
Из этой таблицы выбираются значения трех опорных точек, одна из которых (начальное значение) должна лежать в середине ряда с тем, чтобы полученная функция одинаково точно приближала данное значение как в конце, так и в начале ряда. Следовательно,
Определяются коэффициенты уравнения (4.26):
Следующий шаг – переход к вычислению необходимых интегралов (рис. 4.5).
Рис. 4.5 Определение необходимых интегралов для ФГС
Интеграл вида
есть площадь, ограниченная графиком и значениями
, равными 34,3 и 31,2. Так как верхний предел интеграла меньше нижнего, то значение интеграла отрицательное. Площадь, ограниченная значениями
равными 34,3 и 31,2, будет складываться из площадей трех трапеций:
Актуально о образовании:
Конспект занятий
На основании рабочего плана тренер составляет конспект на каждое занятие (табл. 4). В конспекте он перечисляет упражнения, излагает их направленность как средства для решения задач, раскрывает методические приемы, строго регламентирует время. Конспект составляется с учетом результатов предыдущих за ...
Педагогические технологии
Проблемы образовательных технологий, огромный опыт педагогических инноваций, авторских школ и учителей-новаторов постоянно требуют обобщения и систематизации. Педагогические системы могут быть описаны как целостные явления с помощью ряда признаков (по В. Г. Афанасьеву): - интергративные качества (т ...
Организация обучения решению текстовых задач на уроках
математики
Значительное внимание уделяется вопросам организации обучения решению задач на уроках математики в процессе учебной работы над задачей. Выделяют следующие организации обучения решению текстовых задач: Фронтальное решение текстовых задач. Под фронтальным решением задач обычно понимают решение одной ...