Модифицированный имитационным моделированием метод экспоненциального сглаживания

Новое о образовании » Образовательный стандарт дисциплины "Системное моделирование" » Модифицированный имитационным моделированием метод экспоненциального сглаживания

Страница 8

(4.32)

параметры которого определены выше, и задают ошибку аппроксимации по зависимости (блок 14а)

, (4.33)

где – число наблюдений над прогнозируемой характеристикой;

осуществляются ранжировка исходных данных по возрастанию , выбор опорных точек по правилу (блок 16а)

и их запись;

описанная процедура повторяется для каждого значения (блоки 2а, За, 18а).

После выбора опорных точек в алгоритме предусмотрены операторы по подготовке к составлению системы уравнений порядка. С этой целью по соответствующим зависимостям методом численного интегрирования (методом трапеций) вычисляются , а также значения и (блок 5). При этом

.

Если число членов ФГС-модели , то значения параметров функции и относительного отклонения функции от в -й точке рассчитываются в соответствии с выражениями блоков 7–3. На основе выбора из множества значения и сравнения его с заданным (блоки 45, 47), принимается решение либо продолжать усложнять модель, либо удовлетвориться достигнутой сложностью. При осуществляется составление системы уравнений порядка вида (4.31) (блок 14) и решение ее методом Гаусса относительно параметров и постоянных интегрирования (блок 15).

В блоке 16 осуществляется вычисление параметров

по зависимостям

(4.34)

Вычисление корней базисного уравнения производится методом Ньютона с использованием стандартной программы (блок 17). Поскольку в общем случае корни уравнения могут быть действительными, комплексными или действительными и комплексными, в блоках 18, 27 производится их анализ с целью определения дальнейшей расчетной схемы. При условии, что все корни действительные, функция принимает вид

Страницы: 3 4 5 6 7 8 9 10


Актуально о образовании:

Организация экспериментального обучения и его результаты
С целью экспериментально проверить разработанную методику на третьем этапе исследования в девятом классе школы №32 г. Астрахани была проведена диагностика уровня развития пространственного мышления и пространственных представлений. В основу диагностических заданий были положены требования к развити ...

Начало образования на Руси
На Руси учебные заведения именовались училищами: слово школа вошло в обиход начиная с XIV века. Уже в первой половине XI века нам известны дворцовая школа князя Владимира в Киеве и школа, основанная Ярославом Мудрым в Новгороде в 1030 году. Содержание образования, как и в учебных заведениях Запада, ...

Решение задач методом с "конца". Решение задач на все действия с дробными числами
Вступительное слово учителя. Простейшим примером задачи, решаемой с "конца" может служить игра в лабиринты, нарисованные на бумаге, которые нужно проходить с помощью карандаша. Многие из этих лабиринтов содержат несколько возможных путей, и среди них только один верный путь, который приве ...

Категории

Copyright © 2020 - All Rights Reserved - www.centraleducation.ru