Приведенные в табл. 1 и 2 матрицы планирования обладают свойствами ортогональности, симметричности и нормировки.
Свойство симметричности относительно центра опыта заключается в том, что алгебраическая сумма элементов вектор-столбцов каждого из факторов равна нулю:
;
;
. (4)
Условие нормировки подтверждается равенством суммы квадратов элементов каждого столбца числу опытов:
;
. (5)
Свойство ортогональности определяется равенством нулю произведений любых двух вектор-столбцов:
;
. (6)
Предполагается, что при перемножении элементов с одноименными знаками получаем
, с разноименными
.
Свойство ортогональности позволяет резко уменьшить трудоемкость вычислений коэффициентов регрессии, так как матрица нормальных уравнений становится диагональной, причем ее диагональные элементы равны числу испытаний
, заданных матрицей ПФП.
Воспользуемся матрицей планирования (табл.1) для получения уравнения регрессии вида
. (7)
При вычислении
оценок коэффициентов регрессии
по формуле последовательно получим
Отсюда
;
;
;
.
Таким образом, каждый из коэффициентов
вычисляется независимо и по простой формуле, которая в общем случае имеет вид
. (8)
Поскольку все диагональные элементы матрицы ошибок
равны между собой, каждая из оценок
получена с одинаковой (и минимальной) дисперсией
, (9)
где
– ошибка опыта.
Рассмотренные ПФП являются оптимальными в том смысле, что при их реализации для данного числа испытаний
определитель матрицы ошибок
минимален. Геометрически это означает, что сведен к минимуму объем эллипсоида рассеивания оценок параметров. Важным свойством полученных планов является также рототабельность, которая заключается в том, что точность предсказания значений выходной характеристики
одинакова на равных расстояниях от центра плана и не зависит от направления.
Актуально о образовании:
Работа с учениками
Деятельность классного руководителя обычно начинается с изучения класса и каждого ученика в отдельности. Успех воспитательной деятельности классного руководителя во многом зависит от глубокого проникновения его во внутренний мир детей, от понимания их переживаний и мотивов поведения. Изучить, чем ж ...
Работа с одаренными детьми в лицее
Главные задачи современной школы – раскрытие способностей каждого ученика, воспитание порядочного и патриотичного человека, личности, готовой к жизни в высокотехнологичном, конкурентном мире. Школьное обучение должно быть построено так, чтобы выпускники могли самостоятельно ставить и достигать серь ...
Методические разработки по теме "Способы получения алкинов"
Современный урок по химии "Алкины, их строение и номенклатура" Образовательные цели: изучить строение, гомологический ряд, изомерию и номенклатуру алкинов на примере ацетилена и его гомологов. Развивающие цели: создать условия для развития логического мышления через сравнение и установлен ...