Полные факторные планы испытаний

Страница 4

Приведенные в табл. 1 и 2 матрицы планирования обладают свойствами ортогональности, симметричности и нормировки.

Свойство симметричности относительно центра опыта заключается в том, что алгебраическая сумма элементов вектор-столбцов каждого из факторов равна нулю:

; ; . (4)

Условие нормировки подтверждается равенством суммы квадратов элементов каждого столбца числу опытов:

; . (5)

Свойство ортогональности определяется равенством нулю произведений любых двух вектор-столбцов:

;. (6)

Предполагается, что при перемножении элементов с одноименными знаками получаем , с разноименными .

Свойство ортогональности позволяет резко уменьшить трудоемкость вычислений коэффициентов регрессии, так как матрица нормальных уравнений становится диагональной, причем ее диагональные элементы равны числу испытаний , заданных матрицей ПФП.

Воспользуемся матрицей планирования (табл.1) для получения уравнения регрессии вида

. (7)

При вычислении оценок коэффициентов регрессии по формуле последовательно получим

Отсюда

; ;

; .

Таким образом, каждый из коэффициентов вычисляется независимо и по простой формуле, которая в общем случае имеет вид

. (8)

Поскольку все диагональные элементы матрицы ошибок равны между собой, каждая из оценок получена с одинаковой (и минимальной) дисперсией

, (9)

где – ошибка опыта.

Рассмотренные ПФП являются оптимальными в том смысле, что при их реализации для данного числа испытаний определитель матрицы ошибок минимален. Геометрически это означает, что сведен к минимуму объем эллипсоида рассеивания оценок параметров. Важным свойством полученных планов является также рототабельность, которая заключается в том, что точность предсказания значений выходной характеристики одинакова на равных расстояниях от центра плана и не зависит от направления.

Страницы: 1 2 3 4 5 6


Актуально о образовании:

Организация обучения решению текстовых задач на уроках математики
Значительное внимание уделяется вопросам организации обучения решению задач на уроках математики в процессе учебной работы над задачей. Выделяют следующие организации обучения решению текстовых задач: Фронтальное решение текстовых задач. Под фронтальным решением задач обычно понимают решение одной ...

Система образования в эпоху античности
Первоначальное образование в Риме - умение читать, писать, считать было не редкостью среди самых простых граждан, араб – управитель сколько-нибудь значительного поместья непременно знал грамоту и счет. Лучшим средством образования всегда служит изучение языка. Мальчиков и девочек начинали обучать с ...

Общее представление о технологии обучения и классификация технологий обучения химии
В последнее время все больше говорят не в отдельности о методах, формах, средствах обучения, а о технологии обучения химии. Это лишний раз подтверждает, что успех достигается лишь тогда, когда все они используются в комплексе. Технология обучения химии – это особый вид методики обучения химии, кото ...

Категории

Copyright © 2019 - All Rights Reserved - www.centraleducation.ru