Историко-педагогический анализ проблемы формирования умений решать текстовые задачи

Страница 7

выполнение комплекса действий, составляющих данное умение;

самоанализ результатов выполнения действий, составляющих умение в сопоставлении с целью деятельности.

Изучением роли текстовых задач в обучении математике занимались В.Л. Латышев, М.И. Моро, Г.Б. Поляк, А.С. Пчелко, В.Л. Радченко, И.Н. Семенова, Я.Л. Шор, С.И. Шорох-Троцкий и др. Авторы считают текстовые задачи прекрасным дидактическим и развивающим средством, указывая, что они осуществляют связь обучения с жизнью, способствуют усвоению математических понятий и установлению внутрипредметных и межпредметных связей, формированию умения решать математические задачи, развивают мышление, память, воображение, смекалку ребенка и т.д. Так как текстовые задачи являются первыми математическими задачами, изучаемыми в школе, именно с их помощью ученики узнают о структуре задачи, этапах ее решения и используемых при этом математических методах.

Решая математическую задачу, человек познает много нового: знакомится с новой ситуацией, описанной в задаче, с применением математической теории к ее решению, познает новый метод решения или новые теоретические разделы математики, необходимые для решения задачи, и т.д. Иными словами, при решении математических задач человек приобретает математические знания, повышает свое математическое образование. При овладении методом решения некоторого класса задач у человека формируется умение решать задачи, а при достаточной тренировке - и навык, что тоже повышает уровень математического образования.

При решении математических задач младший школьник обучается применять математические знания к практическим нуждам, готовится к практической деятельности в будущем, к решению задач, выдвигаемых практикой, повседневной жизнью. Почти во всех конструкторских расчетах приходится решать математические задачи, исходя из запросов практики. Исследование и описание процессов и их свойств невозможно без привлечения математического аппарата, т.е. без решения математических задач. Математические задачи решаются в физике, химии, биологии, сопротивлении материалов, электро и радиотехнике, особенно в их теоретических основах, и др.

Решение математических задач приучает выделять посылки и заключения, данные и искомые, находить общее, и особенно в данных, сопоставлять и противопоставлять факты. При решении математических задач, как указывал А.Я. Хинчин , воспитывается правильное мышление, и прежде всего учащиеся приучаются к полноценной аргументации. Решение задачи должно быть полностью аргументированным, т.е. не допускаются незаконные обобщения, необоснованные аналогии, предъявляется требование полноты дизъюнкции (рассмотрение всех случаев данной в задаче ситуации), соблюдаются полнота и выдержанность классификации. При решении математических задач у учащихся формируется особый стиль мышления: соблюдение формальнологической схемы рассуждений, лаконичное выражение мыслей, четкая расчлененность хода мышления, точность символики.

Математическая задача воспитывает своей фабулой, текстовым содержанием. Поэтому фабула многих математических задач существенно изменяется в различные периоды развития общества. Так, в русских дореволюционных задачниках и в задачах, которые решают современные школьники капиталистических стран, сюжетное содержание многих математических задач связано с вопросами получения выгоды при купле и перепродаже товара, расчетов выигрыша-проигрыша в азартной игре и т.п. Совсем иное сюжетное содержание у задач, помещенных в современных советских учебниках, учебниках по математике социалистических стран: в них сюжет направлен на воспитание у учащихся высоких моральных качеств, научного мировоззрения, интернационализма, коллективизма, гордости за свою социалистическую Родину, на ознакомление с достижениями народного хозяйства.

Страницы: 2 3 4 5 6 7 8 9


Актуально о образовании:

Анализ констатирующего эксперимента
Итак, для систематизации нарушений письменной речи у детей с нарушениями зрения, мы воспользовались классификацией Р.И. Лалаевой. И ошибки были отнесены к пяти вышеописанным формам дисграфий: I – артикуляционно-акустическая, II – нарушение фонемного распознавания, III – нарушение анализа и синтеза ...

Внеклассная работа по математике как средство развития познавательного интереса
Отношение учащихся к тому или иному предмету определяется различными факторами: индивидуальными особенностями личности, особенностями самого предмета, методикой его преподавания. По отношению к математике всегда имеются некоторые категории учащихся, проявляющие повышенный интерес к ней; занимающиес ...

Упражнения, обучающие беспереводному пониманию читаемого синтетически
Устные упражнения (речевые), подготавливающие беспереводное понимание читаемого. 1. Перед чтением длинного текста учащиеся прослушивают несколько коротких рассказов. Эти рассказы по сюжету не совпадают с текстом для чтения, но они содержат тот же материал. Вот, например, один из таких рассказов, ко ...

Категории

Copyright © 2022 - All Rights Reserved - www.centraleducation.ru