Историко-педагогический анализ проблемы формирования умений решать текстовые задачи

Страница 7

выполнение комплекса действий, составляющих данное умение;

самоанализ результатов выполнения действий, составляющих умение в сопоставлении с целью деятельности.

Изучением роли текстовых задач в обучении математике занимались В.Л. Латышев, М.И. Моро, Г.Б. Поляк, А.С. Пчелко, В.Л. Радченко, И.Н. Семенова, Я.Л. Шор, С.И. Шорох-Троцкий и др. Авторы считают текстовые задачи прекрасным дидактическим и развивающим средством, указывая, что они осуществляют связь обучения с жизнью, способствуют усвоению математических понятий и установлению внутрипредметных и межпредметных связей, формированию умения решать математические задачи, развивают мышление, память, воображение, смекалку ребенка и т.д. Так как текстовые задачи являются первыми математическими задачами, изучаемыми в школе, именно с их помощью ученики узнают о структуре задачи, этапах ее решения и используемых при этом математических методах.

Решая математическую задачу, человек познает много нового: знакомится с новой ситуацией, описанной в задаче, с применением математической теории к ее решению, познает новый метод решения или новые теоретические разделы математики, необходимые для решения задачи, и т.д. Иными словами, при решении математических задач человек приобретает математические знания, повышает свое математическое образование. При овладении методом решения некоторого класса задач у человека формируется умение решать задачи, а при достаточной тренировке - и навык, что тоже повышает уровень математического образования.

При решении математических задач младший школьник обучается применять математические знания к практическим нуждам, готовится к практической деятельности в будущем, к решению задач, выдвигаемых практикой, повседневной жизнью. Почти во всех конструкторских расчетах приходится решать математические задачи, исходя из запросов практики. Исследование и описание процессов и их свойств невозможно без привлечения математического аппарата, т.е. без решения математических задач. Математические задачи решаются в физике, химии, биологии, сопротивлении материалов, электро и радиотехнике, особенно в их теоретических основах, и др.

Решение математических задач приучает выделять посылки и заключения, данные и искомые, находить общее, и особенно в данных, сопоставлять и противопоставлять факты. При решении математических задач, как указывал А.Я. Хинчин , воспитывается правильное мышление, и прежде всего учащиеся приучаются к полноценной аргументации. Решение задачи должно быть полностью аргументированным, т.е. не допускаются незаконные обобщения, необоснованные аналогии, предъявляется требование полноты дизъюнкции (рассмотрение всех случаев данной в задаче ситуации), соблюдаются полнота и выдержанность классификации. При решении математических задач у учащихся формируется особый стиль мышления: соблюдение формальнологической схемы рассуждений, лаконичное выражение мыслей, четкая расчлененность хода мышления, точность символики.

Математическая задача воспитывает своей фабулой, текстовым содержанием. Поэтому фабула многих математических задач существенно изменяется в различные периоды развития общества. Так, в русских дореволюционных задачниках и в задачах, которые решают современные школьники капиталистических стран, сюжетное содержание многих математических задач связано с вопросами получения выгоды при купле и перепродаже товара, расчетов выигрыша-проигрыша в азартной игре и т.п. Совсем иное сюжетное содержание у задач, помещенных в современных советских учебниках, учебниках по математике социалистических стран: в них сюжет направлен на воспитание у учащихся высоких моральных качеств, научного мировоззрения, интернационализма, коллективизма, гордости за свою социалистическую Родину, на ознакомление с достижениями народного хозяйства.

Страницы: 2 3 4 5 6 7 8 9


Актуально о образовании:

Возрастные особенности младших школьников
Воспитание патриотизма на уроках музыки имеет огромное значение, так как речь идет о судьбе настоящего и будущих поколений, так как наши молодые современники должны не только обладать должным объемом знаний, но они должны стать зрелыми духовно и интеллектуально. Материализм продолжает все больше до ...

Проявления общего недоразвития речи у детей дошкольного возраста
Несмотря на различную природу дефектов, у этих детей имеются типичные проявления, указывающие на системное нарушение речевой деятельности. Для детей с ОНР характерно: позднее начало речи (3-4 года); резкое ограничение словаря; ярко выраженные аграмматизмы (смешение падежных форм, отсутствие согласо ...

Структура педагогических способностей
В настоящее время концепция педагогических способностей, развиваемая Н.В. Кузьминой, представляет собой наиболее полную системную трактовку. В этой концепции все педагогические способности соотнесены с основными аспектами (сторонами) педагогической системы. Сначала коротко рассмотрим некоторые аспе ...

Категории

Copyright © 2019 - All Rights Reserved - www.centraleducation.ru