В данной системе обучения изучение таблицы умножения в первую очередь способствует осознанию причинно-следственных связей и установление аналогий, то есть познавательных метапредметных результатов.
Рассмотрим принцип изучения таблицы умножения в системе Н.Ф. Виноградовой.
В курсе математики 2 класса эта тема является центральной. Большую её часть занимает арифметический материал: таблица умножения однозначных чисел (в полном объеме) и соответствующие табличные случаи деления. Важным вопросом, рассматриваемым одновременно с таблицей умножения, является введение понятия о доле числа и обучение учащихся умению находить половину, треть, четверть, пятую … части данного числа, используя деление. При этом никаких обозначений долей в форме ½ не вводится. Заканчивается арифметическая часть темы ознакомлением учащихся с новыми видами отношений – «больше в» и «меньше в».
Изучение таблицы умножения относится к традиционным вопросам начальной школы. От того, насколько прочно дети освоили ее в начальных классах, во многом зависят их дальнейшие успехи при обучении в основной школе. Поэтому уже к концу 2 класса каждый ученик должен знать наизусть результаты табличного умножения и деления. Чтобы этого добиться, учителю нужно приложить немалые усилия.
В ходе изучения каждой части таблицы умножения (умножение на 2, на 3 и т.д.) учащимся предлагают арифметические задачи.
Методика изучения этого вопроса строится следующим образом. Сначала на конкретных примерах учащимся разъясняется, что значит одних предметов в несколько раз больше или меньше, чем других (например, в 2, в 3, в 4 и т.д. раз). Это значит, что одно число содержится в другом 2, 3, 4 ит.д. раз.
Работая с таблицей умножения, дети учатся находить долю числа (половину, треть, четверть и т.д. этого числа). Далее в соответствии с программой нужно научить их находить несколько долей числа и решать обратную задачу, то есть находить числа по нескольким его долям.
В данной теме вводится новая для учащихся величина – площадь фигуры и ее единицы (квадратный сантиметр, квадратный дециметр и квадратный метр) с их обозначениями (см2, дм2, м2).
Дети должны понять, что в простейших случаях площадь измеряется числом заполняющих плоскую фигуру единичных квадратов со стороной, равной единицы длины.
Знакомя учащихся с площадью фигуры, применяйте различные практические приемы определения площади: предварительное деление фигуры отрезками на квадраты с данной длиной стороны, накладывание на фигуру палетки (прозрачной бумаги с нанесенной на нее сеткой единичных квадратов). В результате пересчитывания квадратов получается площадь данной фигуры.
Этап использования практических приемов нахождения площадей фигур начинается параллельно с изучением таблицы умножения и длится довольно долго; за это время дети приобретут достаточный опыт, и, как только будет введено понятие о прямоугольнике, они смогут самостоятельно или с помощью учителя сформулировать правило нахождения площади прямоугольника.
В данной системе не встречается определенных специальных приемов изучения таблицы умножения. Все изучение строится на последовательном заучивании всей таблицы (сначала на 2, затем на 3 и т.д.).
Из всего вышесказанного можно сделать вывод, что никаких явно выраженных метапредметных результатов у учащихся не формируется. Навык табличного умножения формируется посредствам заучивания, без использования каких-либо конкретных методов и приемов.
В данной образовательной системе в основном присутствуют задания и упражнения направленные на формирование регулятивных метапредметных умений.
Актуально о образовании:
ДДТ в организации культурного досуга детства
В городе Советске, расположенном в 140 км. от г. Кирова, кроме учреждений культуры, учреждений образования, предприятий, имеется центр дополнительного образования - Муниципальное образовательное учреждение дополнительного образования детей Дом детского творчества (МОУ ДОД ДДТ). История этого учрежд ...
Выявление меры связи между характеристиками мышления и
успешностью в обучении математике
После проведения исследований характеристик мышления и получения результатов проверим гипотезу о связи между мышлением учеников и их достижениями в математике. Попробуем установить, влияет ли уровень развития мышления учащихся на их успешность в обучении математике, зависят ли результаты обучения о ...
Психолого-педагогические основы формирования умения
решать текстовые задачи
Решение математических задач требует применения многочисленных мыслительных умений: анализировать заданную ситуацию, сопоставлять данные и искомые, решаемую задачу с решенными ранее, выявляя скрытые свойства заданной ситуации; конструировать простейшие математические модели, осуществляя мысленный э ...