Примерное содержание сообщения учащегося о Леонарде Эйлере.
Рассказ учителя о кругах Эйлера.
Очень часто бывает так, что решение задачи помогает найти рисунок. Использование рисунка делает решение задачи простым и наглядным.
Рассмотрим такую задачу.
1). В классе 35 учеников. Из них: 19 ребят занимают в математическом кружке, 10 - в биологическом, 9 ребят не посещают эти кружки. Сколько биологов увлекаются математикой?
Решение. Для решения задачи изобразим в виде "кругов" учащихся,
занимающихся математикой и биологией.
Обозначим их буквами М и Б соответственно. Круги М и Б содержатся в прямоугольнике, которым мы изображаем всех учащихся класса.

![]()
![]()
![]()
Нам очевидно, что общая часть кругов М и Б состоит из тех ребят, которые одновременно увлекаются и математикой, и биологией. Теперь давайте посчитаем. Всего внутри прямоугольника 35 ребят. Внутри двух маленьких кругов М и Б будет 35-9= 26 ребят, поскольку нам известно, что 9 ребят не посещают кружки. Внутри "математического" круга 19 ребят, значит, в той части "биологического" круга, которая расположена вне круга М, находится 26-19= 7 биологов, не посещающих математический кружок. Остальные биологи, их 10-7= 3, находятся в общей части кругов МБ. Таким образом, 3 биолога увлекаются математикой.
Изображение различных множеств в виде кругов широко использовал в своих научных трудах великий математик ХVIII века Леонард Эйлер. Именно поэтому рисунки, подобные в задаче, которую разобрали выше, обычно называют "кругами Эйлера". Эйлер отмечал, что изображение множеств в виде кругов "очень подходит для того, чтобы облегчить наши рассуждения".
Круги Эйлера - геометрическая схема, с помощью которой можно изобразить отношения между подмножествами.
2). В киоске около школы продается мороженое двух видов: "Спортивное" и "Мальвина". На перемене 24 ученика успели купить мороженое. При этом 15 из них купили "Спортивное", а 17 - мороженое "Мальвина". Сколько человек купили мороженое обоих сортов?
Решение. Попробуем изобразить данные задачи с помощью кругов.
Общая часть кругов состоит из тех школьников, которые купили мороженое обоих сортов. Всего мороженое купили 24 ученика. Внутри круга М 17 учеников, а в круге С - 15 учеников. Возьмем, например, учащихся, купивших мороженое "Мальвина". Получим 24-17=7 учащихся, которые купили мороженое "Спортивное", но не купили мороженое "Мальвина". Остальные учащиеся: 15-7= 5 купили и мороженое "Спортивное", и "Мальвина". Таким образом, мы получили 5 учеников, которые купили оба вида мороженого.
3). Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?
Актуально о образовании:
Современная практика школ М.
Монтессори
Первый детский сад по системе Марии Монтессори в России начал работать в 1913 году. Однако в 1926 года Наркомпрос запретил использовать в тогдашнем СССР ее методику, и имя ее было предано забвению. Новая история Монтессори-педагогики в России началась лишь в 1991 году, после образовательного фестив ...
Воспитание ребёнка с точки зрения духовной науки
Последователь Штайнера, вальдорфский учитель Ф. Карлгрен подчёркивал, что для подхода к сложным задачам воспитания вальдорфская педагогика обращается к своей духовно-научной основе - к антропософскому познанию человека. Доклад, с которым Штайнер выступал в различных населённых пунктах Германии в 19 ...
Анализ практической апробации разработки
В связи с отсутствием технической реализации Интернет-фестиваля для младших школьников, разработанное содержание апробировалась в бескомпьютерном варианте. В начальной школе № 108 Советского р-на г. Красноярска проектный метод обучения используется только на уроках информатики в ЛогоМирах 2.0. Так, ...