При решении этих задач нужно выяснить с учащимися, что возможны два случая:
объем выполненной работы известен;
объем выполненной работы неизвестен.
Первые задачи удобно решать, используя таблицы.
Пример. Два токаря вместе изготовили 350 деталей. Первый токарь делал в день 40 деталей и работал 5 дней, второй работал на 2 дня меньше. Сколько деталей в день делал второй токарь?
Составим таблицу (см. табл.3).
Таблица 3
Условие задачи
Производительность |
Время |
Количество | |
1т. |
40 деталей |
5 дней |
|
2т. |
? |
на 2 дня меньше |
Объяснение. Так как известны производительность и время работы первого токаря, найдем количество деталей, изготовленных первым токарем.
40*5 = 200 (дет.) – изготовил первый токарь.
Работая с таблицей, делаем вывод, что можно найти, сколько деталей изготовил второй токарь.
350 – 200 = 150 (дет.) – изготовил второй токарь.
Обратив внимание на опорные слова «на…меньше», делаем вывод, что можно найти, сколько дней работал второй.
5 – 2 = 3 (дня) – работал второй токарь.
Зная количество и время работы второго токаря, находим его производительность:
150 / 3 = 50 (дет.) – изготовлял второй токарь в день.
Уже при решении первых задач, нужно приучать детей к правильной терминологии.
Для решения задач второго типа, текст задачи можно проиллюстрировать чертежами, что помогает учащимся зрительно видеть задачу.
Пример 1. Новая машина может выкопать канаву за 8 часов, а старая – за 12. Новая работала 3 часа, а старая - 5 часов. Какую часть канавы осталось выкопать?
Рис.13. Графическое изображение задачи из примера №1
Дадим наглядное представление этих задач. Условимся, что объем выполненной работы неизвестен, поэтому принимаем его за 1 и изображаем в виде отрезка, но отрезков будет три, так как возможны три случая:
работает одна старая машина;
работает одна новая машина;
работают вместе обе машины.
Выясним, почему отрезки равной длины (обе машины выполняют одну и ту же работу).
Разбор задачи. На сколько равных частей делим первый отрезок? На 8, так как работа выполняется за 8 часов. Что показывает 1 часть? Какую часть работы выполняет новая машина за 1 час, т.е. какова ее производительность?
Так как новая машина работала 3 часа, то выполнила части все работы. Отмечаем на третьем отрезке -
.
Аналогичные рассуждения проводим, рассматривая старую машину, и отмечаем на третьем отрезке - .
Далее рассматривается третий нижний отрезок, и по нему выясняется, как найти оставшуюся часть, т.е., отрезок, обозначенный знаком вопроса.
В связи с экономией времени деление отрезков производится «на глаз», хотя очень полезно показать, как можно разделить быстро на 4 равные части (отрезок делится пополам, а затем каждая часть еще пополам). Аналогично деление на 8 и т.д. На 6 частей – сначала пополам, а потом каждую часть - на три.
Пример №2. Два кузнеца, работая вместе, могут выполнить работу за 8 часов. За сколько часов может выполнить работу первый кузнец, если второй выполняет ее за 12 часов?
Актуально о образовании:
Российское образование в Александровскую эпоху
В начале царствования Александра I группа молодых реформаторов во главе с М.М. Сперанским наряду с другими преобразованиями осуществила и реформу системы образования. Впервые была создана школьная система, распределенная по так называемым учебным округам и замкнутая на университетах. Эта система бы ...
Место науки о стилях в школьной практике
Стилистика – учебная дисциплина, исследующая один из коммуникативных аспектов языка. Значение курса стилистики в воспитании и обучении молодого поколения обусловлено той особой ролью, которую выполняет язык как важнейшее средство общения человека во всей его многогранной речевой практике. Основной ...
Начало образования на Руси
На Руси учебные заведения именовались училищами: слово школа вошло в обиход начиная с XIV века. Уже в первой половине XI века нам известны дворцовая школа князя Владимира в Киеве и школа, основанная Ярославом Мудрым в Новгороде в 1030 году. Содержание образования, как и в учебных заведениях Запада, ...