Виды арифметических задач

Страница 1

Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные. Задача, для решения которой надо выполнить один раз арифметическое действие, называется простой. Задача, для решения которой надо выполнить несколько действий называется составной.

Простые задачи в системе обучения математике играют чрезвычайно важную роль. С помощью решения простых задач формируется одно из центральных понятий начального курса математики – понятие об арифметических действиях и ряд других понятий. Умение решать простые задачи является подготовительной ступенью овладения учащимися умением решать составные задачи, так как решение составной задачи сводится к решению ряда простых задач. При решении простых задач происходит первое знакомство с задачей и её составными частями.

В связи с решением простых задач дети овладевают основными приемами работы над задачей.

На первом этапе знакомства детей с простой задачей перед учителем возникает одновременно несколько довольно сложных проблем:

Нужно, чтобы в сознание детей вошли и укрепились вторичные сигналы к определенным понятиям, связанным с задачей.

Выработать умение видеть в задаче данные числа и искомое число.

Научить сознательно выбирать действия и определять компоненты этих действий. Разрешение указанных проблем нельзя расположить в определенной последовательности. В занятиях с детьми довольно часто приходится добиваться результатов не одного за другим, а идти к достижению нескольких целей одновременно, постепенно развивая и расширяя достигнутые успехи в нескольких направлениях.

При знакомстве с задачами и их решением нельзя избежать специфических терминов, но дети должны их понимать, чтобы осознавать смысл задачи. Работа с детьми по усвоению ими терминологии начинается с первых дней занятий в школе и ведётся систематически на протяжении всех лет обучения.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

Рассмотрим в качестве примера задачу: «В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько детей дежурило в школе?».

Эта задача включает 2 простых:

В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько мальчиков дежурило в школе?

В школе дежурили 8 девочек и 10 мальчиков. Сколько всего детей дежурило в школе?

Как видим, число, которое было искомым в первой задаче, стало данным во второй.

Последовательное решение этих задач является решением составной задачи: 1) 8 + 2 = 10; 2) 8 + 10 = 18.

Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время.

Запись решения многих составных задач и составление по ним выражения связаны с использованием скобок. Скобки – математический знак, употребляемый для порядка действий. В скобки заключается то действие, которое нужно выполнить раньше.

Страницы: 1 2


Актуально о образовании:

Современные требования к программам дополнительного образования
Нормативные основания: 1. Дополнительные общеобразовательные программы детей должны быть разработаны в соответствии с основными нормативными и программными документами в области образования РФ. 2 . Предназначение дополнительных общеобразовательных программ Дополнительные общеобразовательные програм ...

Метод диалогического изложения
Метод диалогического изложения представляет собой диалог учителя с коллективом учащихся. Учитель в созданной им проблемной ситуации сам ставит проблему и решает её, но с помощью учащихся, то есть они активно участвуют в постановке проблемы выдвижения предположений, и доказательства гипотез. Деятель ...

Тренинг "Развитие творческих способностей педагога"
Задачи: 1. Осознание участниками своих личностных особенностей и творческих возможностей; 2. Овладение приёмами преодоления сомнений, уверенности в своих силах; 3. Создание в группе атмосферы психологического комфорта. "Аллитерация имени" (упражнение) Участники садятся в круг так, чтобы х ...

Категории

Copyright © 2020 - All Rights Reserved - www.centraleducation.ru